Part Number Hot Search : 
1N5065 EPA030C 0805C U834BS MC14551B TDA2030V AL5DA002 AD100
Product Description
Full Text Search
 

To Download ADR390AUJZ-R2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Micropower, Low Noise Precision Voltage References with Shutdown ADR390/ADR391/ADR392/ADR395
FEATURES
Compact TSOT-23-5 packages Low temperature coefficient B grade: 9 ppm/C A grade: 25 ppm/C Initial accuracy B grade: +4 mV maximum A grade: +6 mV maximum Ultralow output noise: 5 V p-p (0.1 Hz to 10 Hz) Low dropout: 300 mV Low supply current 3 A maximum in shutdown 120 A maximum in operation No external capacitor required Output current: 5 mA Wide temperature range -40C to + 125C
FUNCTIONAL BLOCK DIAGRAM
SHDN 1 VIN
2
VOUT (SENSE) 3 (Not to Scale) 4 V OUT (FORCE)
Figure 1. 5-Lead TSOT (UJ Suffix)
Table 1.
Model ADR390B ADR390A ADR391B ADR391A ADR392B ADR392A ADR395B ADR395A VOUT (V) 2.048 2.048 2.5 2.5 4.096 4.096 5.0 5.0 Temperature Coefficient (ppm/C) 9 25 9 25 9 25 9 25 Accuracy (mV) +4 +6 +4 +6 +5 +6 +5 +6
APPLICATIONS
Battery-powered instrumentations Portable medical instrumentations Data acquisition systems Industrial process controls Automotive
Contact Analog Devices, Inc. for other voltage options.
GENERAL DESCRIPTION
The ADR390, ADR391, ADR392, and ADR395 are precision 2.048 V, 2.5 V, 4.096 V, and 5 V band gap voltage references that feature low power and high precision in a tiny footprint. Using ADI's patented temperature drift curvature correction techniques, the ADR39x references achieve a low 9 ppm/C of temperature drift in the TSOT package. The ADR39x family of micropower, low dropout voltage references provides a stable output voltage from a minimum supply of 300 mV above the output. Their advanced design eliminates the need for external capacitors, which further reduces board space and system cost. The combination of low power operation, small size, and ease of use makes the ADR39x precision voltage references ideally suited for batteryoperated applications.
Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 (c) 2004 Analog Devices, Inc. All rights reserved.
00419-D-001
ADR390/ ADR391/ ADR392/ ADR395
5
GND
ADR390/ADR391/ADR392/ADR395 TABLE OF CONTENTS
ADR390--Specifications ................................................................. 3 ADR391--Specifications ................................................................. 4 ADR392--Specifications ................................................................. 5 ADR395--Specifications ................................................................. 6 Absolute Maximum Ratings............................................................ 7 Thermal Resistance ...................................................................... 7 ESD Caution.................................................................................. 7 Terminology ...................................................................................... 8 Typical Performance Characteristics ............................................. 9 Theory of Operation ...................................................................... 16 Applications..................................................................................... 17 Basic Voltage Reference Connection ....................................... 17 Outline Dimensions ....................................................................... 19 Ordering Guide........................................................................... 19
REVISION HISTORY
4/04--Data Sheet Changed from Rev. D to Rev. E Changes to ADR390--Specifications............................................ 3 Changes to ADR391--Specifications............................................ 4 Changes to ADR392--Specifications............................................ 5 Changes to ADR395--Specifications............................................ 6 4/04--Data Sheet Changed from Rev. C to Rev. D Updated Format.................................................................Universal Changes to Title ............................................................................... 1 Changes to Features ........................................................................ 1 Changes to Applications ................................................................. 1 Changes to General Description ................................................... 1 Changes to Table 1........................................................................... 1 Changes to ADR390--Specifications............................................ 3 Changes to ADR391--Specifications............................................ 4 Changes to ADR392--Specifications............................................ 5 Changes to ADR395--Specifications............................................ 6 Changes to Absolute Maximum Ratings ...................................... 7 Changes to Thermal Resistance..................................................... 7 Moved ESD Caution ....................................................................... 7 Changes to Figure 3, Figure 4, Figure 7, and Figure 8................. 9 Changes to Figure 11, Figure 12, Figure 13, and Figure 14 ...... 10 Changes to Figure 15, Figure 16, Figure 19, and Figure 20 ...... 11 Changes to Figure 23 and Figure 24............................................ 12 Changes to Figure 27..................................................................... 13 Changes to Ordering Guide ......................................................... 19 Updated Outline Dimensions...................................................... 19 10/02--Data Sheet Changed from Rev. B to Rev. C Add parts ADR392 and ADR395 ....................................Universal Changes to Features ........................................................................ 1 Changes to General Description ................................................... 1 Additions to Table I......................................................................... 1 Changes to Specifications............................................................... 2 Changes to Ordering Guide ........................................................... 4 Changes to Absolute Maximum Ratings ...................................... 4 New TPCs 3, 4, 7, 8, 11, 12, 15, 16, 19, and 20............................... 6 New Figures 4 and 5...................................................................... 13 Deleted A Negative Precision Reference without Precision Resistors Section ............................................ 13 Edits to General-Purpose Current Source Section ................... 13 Updated Outline Dimensions...................................................... 15 5/02--Data Sheet Changed from Rev. A to Rev. B Edits to Layout ...................................................................Universal Changes to Figure 6....................................................................... 13
Rev. E | Page 2 of 20
ADR390/ADR391/ADR392/ADR395 ADR390--SPECIFICATIONS
Electrical Characteristics, VIN = 2.5 V to 15 V, TA = 25C, unless otherwise noted. Table 2.
Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VO VOERR VOERR VOERR VOERR TCVO Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, -40C < TA < +125C B Grade, -40C < TA < +125C SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND SHUTDOWN PIN Shutdown Supply Current Shutdown Logic Input Current Shutdown Logic Low Shutdown Logic High VIN - VO VO/VIN VO/ILOAD IIN eN p-p tR VO VO_HYS RRR ISC 300 VIN = 2.5 V to 15 V, -40C < TA < +125C ILOAD = 0 mA to 5 mA, -40C < TA < +85C, VIN = 3 V ILOAD = 0 mA to 5 mA, -40C < TA < +125C, VIN = 3 V No Load -40C < TA < +125C 0.1 Hz to 10 Hz 1, 000 Hours fIN = 60 kHz VIN = 5 V VIN = 15 V 10 25 60 140 120 140 Min 2.042 2.044 Typ 2.048 2.048 Max 2.054 2.052 6 0.29 4 0.19 25 9 Unit V V mV % mV % ppm/C ppm/C mV ppm/V ppm/mA ppm/mA A A V p-p s ppm ppm dB mA mA A nA V V
TEMPERATURE COEFFICIENT
5 20 50 100 80 25 30 3 500 0.8 2.4
ISHDN ILOGIC VINL VINH
1
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.
Rev. E | Page 3 of 20
ADR390/ADR391/ADR392/ADR395 ADR391--SPECIFICATIONS
Electrical characteristics, VIN = 2.8 V to 15 V, TA = 25C, unless otherwise noted. Table 3.
Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VO VOERR VOERR VOERR VOERR TCVO Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, -40C < TA < +125C B Grade, -40C < TA < +125C SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND SHUTDOWN PIN Shutdown Supply Current Shutdown Logic Input Current Shutdown Logic Low Shutdown Logic High VIN - VO VO/VIN VO/ILOAD IIN eN p-p tR VO VO_HYS RRR ISC 300 VIN = 2.8 V to 15 V, -40C < TA < +125C ILOAD = 0 mA to 5 mA, -40C < TA < +85C, VIN = 3 V ILOAD = 0 mA to 5 mA, -40C < TA < +125C, VIN = 3 V No Load -40C < TA < +125C 0.1 Hz to 10 Hz 1, 000 Hours fIN = 60 kHz VIN = 5 V VIN = 15 V 10 25 60 140 120 140 Min 2.494 2.496 Typ 2.5 2.5 Max 2.506 2.504 6 0.24 4 0.16 25 9 Unit V V mV % mV % ppm/C ppm/C mV ppm/V ppm/mA ppm/mA A A V p-p s ppm ppm dB mA mA A nA V V
TEMPERATURE COEFFICIENT
5 20 50 100 80 25 30 3 500 0.8 2.4
ISHDN ILOGIC VINL VINH
1
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.
Rev. E | Page 4 of 20
ADR390/ADR391/ADR392/ADR395 ADR392--SPECIFICATIONS
Electrical characteristics, VIN = 4.3 V to 15 V, TA = 25C, unless otherwise noted. Table 4.
Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VO VOERR VOERR VOERR VOERR TCVO Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, -40C < TA < +125C B Grade, -40C < TA < +125C SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND SHUTDOWN PIN Shutdown Supply Current Shutdown Logic Input Current Shutdown Logic Low Shutdown Logic High VIN - VO VO/VIN VO/ILOAD IIN eN p-p tR VO VO_HYS RRR ISC 300 VIN = 4.3 V to 15 V, -40C < TA < +125C ILOAD = 0 mA to 5 mA, -40C < TA < +125C, VIN = 5 V No Load -40C < TA < +125C 0.1 Hz to 10 Hz 1, 000 Hours fIN = 60 kHz VIN = 5 V VIN = 15 V 10 25 140 120 140 Min 4.090 4.091 Typ 4.096 4.096 Max 4.102 4.101 6 0.15 5 0.12 25 9 Unit V V mV % mV % ppm/C ppm/C mV ppm/V ppm/mA A A V p-p s ppm ppm dB mA mA A nA V V
TEMPERATURE COEFFICIENT
7 20 50 100 80 25 30 3 500 0.8 2.4
ISHDN ILOGIC VINL VINH
1
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.
Rev. E | Page 5 of 20
ADR390/ADR391/ADR392/ADR395 ADR395--SPECIFICATIONS
Electrical characteristics, VIN = 5.3 V to 15 V, TA = 25C, unless otherwise noted. Table 5.
Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VO VOERR VOERR VOERR VOERR TCVO Conditions A Grade B Grade A Grade B Grade B Grade B Grade A Grade, -40C < TA < +125C B Grade, -40C < TA < +125C SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND SHUTDOWN PIN Shutdown Supply Current Shutdown Logic Input Current Shutdown Logic Low Shutdown Logic High VIN - VO VO/VIN VO/ILOAD IIN eN p-p tR VO VO_HYS RRR ISC 300 VIN = 4.3 V to 15 V, -40C < TA < +85C ILOAD = 0 mA to 5 mA, -40C < TA < +85C, VIN = 6 V No Load -40C < TA < +125C 0.1 Hz to 10 Hz 1, 000 Hours fIN = 60 kHz VIN = 5 V VIN = 15 V 10 25 140 120 140 Min 4.994 4.995 Typ 5.000 5.000 Max 5.006 5.005 6 0.12 5 0.10 25 9 Unit V V mV % mV % ppm/C ppm/C mV ppm/V ppm/mA A A V p-p s ppm ppm dB mA mA A nA V V
TEMPERATURE COEFFICIENT
8 20 50 100 80 25 30 3 500 0.8 2.4
ISHDN ILOGIC VINL VINH
1
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.
Rev. E | Page 6 of 20
ADR390/ADR391/ADR392/ADR395 ABSOLUTE MAXIMUM RATINGS
At 25C, unless otherwise noted. Table 6.
Parameter Supply Voltage Output Short-Circuit Duration to GND Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature Range (Soldering, 60 sec) Rating 18 V See Derating Curves -65C to +125C -40C to +125C -65C to +125C 300C
THERMAL RESISTANCE
JA is specified for the worst-case conditions, i.e., JA is specified for a device soldered in a circuit board for surface-mount packages. Table 7. Thermal Resistance
Package Type TSOT-23-5 (UJ-5) JA 230 JC 146 Unit C/W
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. E | Page 7 of 20
ADR390/ADR391/ADR392/ADR395 TERMINOLOGY
Temperature Coefficient The change of output voltage with respect to operating temperature changes normalized by the output voltage at 25C. This parameter is expressed in ppm/C and can be determined by the following equation:
VO_HYS = VO(25C) - VO_TC VO_HYS [ppm] = where: VO (25C) = VO at 25C VO_TC = VO at 25C after a temperature cycle from + 25C to -40C to +125C and back to +25C
NOTES Input Capacitor
VO (25C ) - VO_TC x 106 VO (25C )
TCVO [ ppm/ C ] = where:
VO (25C) = VO at 25C
VO (T2 ) - VO (T1 ) x 106 VO (25C ) x (T2 - T1 )
VO (T1) = VO at Temperature 1 VO (T2) = VO at Temperature 2 Line Regulation
The change in output voltage due to a specified change in input voltage. This parameter accounts for the effects of self-heating. Line regulation is expressed in either percent per volt, partsper-million per volt, or microvolts per volt change in input voltage.
Load Regulation
Input capacitors are not required on the ADR39x. There is no limit for the value of the capacitor used on the input, but a 1 F to 10 F capacitor on the input will improve transient response in applications where the supply suddenly changes. An additional 0.1 F in parallel will also help reduce noise from the supply.
Output Capacitor
The change in output voltage due to a specified change in load current. This parameter accounts for the effects of self-heating. Load regulation is expressed in either microvolts per milliampere, parts-per-million per milliampere, or ohms of dc output resistance.
Long-Term Stability
The ADR39x does not require output capacitors for stability under any load condition. An output capacitor, typically 0.1 F, will filter out any low level noise voltage and will not affect the operation of the part. On the other hand, the load transient response can improve with an additional 1 F to 10 F output capacitor in parallel. A capacitor here will act as a source of stored energy for a sudden increase in load current. The only parameter that will degrade by adding an output capacitor is the turn-on time, and it depends on the size of the capacitor chosen.
200 DATA TAKEN IN CONTROLLED ENVIRONMENT @ 50C 1C 150 100
Typical shift of output voltage at 25C on a sample of parts subjected to a test of 1,000 hours at 25C.
VO = VO(t0) - VO(t1)
V (t ) - VO (t1 ) VO [ppm] = O 0 x 106 VO (t 0 ) where: VO (T0) = VO at 25C at Time 0 VO (T1) = VO at 25C after 1,000 hours operation at 25C
Thermal Hysteresis
DRIFT (ppm)
50
0 -50 -100 -150
00419-D-002
0
86
176
250 324 440 TIME (Hours)
640
840
1040
The change of output voltage after the device is cycled through temperatures from +25C to -40C to +125C and back to +25C. This is a typical value from a sample of parts put through such a cycle.
Figure 2. ADR391 Typical Long-Term Drift over 1,000 Hours
Rev. E | Page 8 of 20
ADR390/ADR391/ADR392/ADR395 TYPICAL PERFORMANCE CHARACTERISTICS
2.060
5.006
2.056
OUTPUT VOLTAGE (V)
5.004 SAMPLE 3
SAMPLE 2
5.002
VOUT (V)
2.052 SAMPLE 3 2.048 SAMPLE 1 2.044
00419-D-003
SAMPLE 2 5.000 SAMPLE 1 4.998
2.040 -40
-5
30 65 TEMPERATURE (C)
100
125
4.994 -40
-5
30 65 TEMPERATURE (C)
100
125
Figure 3. ADR390 Output Voltage vs. Temperature
2.506 SAMPLE 2 2.504
SUPPLY CURRENT (A)
Figure 6. ADR395 Output Voltage vs. Temperature
140
+125C 120 SAMPLE 1 +85C 100 +25C
2.502
VOUT (V)
SAMPLE 3 2.500
-40C 80
2.498
00419-D-004
2.494 -40
-5
30 65 TEMPERATURE (C)
100
125
40 2.5
5.0
7.5 10.0 INPUT VOLTAGE (V)
12.5
15.0
Figure 4. ADR391 Output Voltage vs. Temperature
4.100
Figure 7. ADR390 Supply Current vs. Input Voltage
140
4.098
120
4.096 SAMPLE 2
SUPPLY CURRENT (A)
SAMPLE 3
+85C 100 +25C -40C 80
VOUT (V)
4.094 SAMPLE 1 4.092
4.088 -40
00419-D-005
0
40 TEMPERATURE (C)
80
125
40 2.5
5.0
7.5 10.0 INPUT VOLTAGE (V)
12.5
15.0
Figure 5. ADR392 Output Voltage vs. Temperature
Figure 8. ADR391 Supply Current vs. Input Voltage
Rev. E | Page 9 of 20
00419-D-008
4.090
60
00419-D-007
2.496
60
00419-D-006
4.996
ADR390/ADR391/ADR392/ADR395
140
180 IL= 0mA TO 5mA
LOAD REGULATION (ppm/mA)
120
+125C
160
SUPPLY CURRENT (A)
100
+25C
140 VIN = 3.0V 120
VIN = 5.0V
-40C 80
60
00419-D-009
100
00419-D-012
40 5 7 9 11 INPUT VOLTAGE (V) 13 15
80 -40
-10
20 50 TEMPERATURE (C)
80
110
125
Figure 9. ADR392 Supply Current vs. Input Voltage
140 90
Figure 12. ADR391 Load Regulation vs. Temperature
IL= 0mA TO 5mA
LOAD REGULATION (ppm/mA)
120
SUPPLY CURRENT (A)
+125C
80 VIN = 7.5V 70 VIN = 5V 60
100
+25C
-40C 80
60
00419-D-010
50
00419-D-013
40 5.5
7.0
8.5
11.5 10.0 INPUT VOLTAGE (V)
13.0
14.5
40 -40
-5
30 65 TEMPERATURE (C)
100
125
Figure 10. ADR395 Supply Current vs. Input Voltage
120 IL= 0mA TO 5mA 100
LOAD REGULATION (ppm/mA)
LOAD REGULATION (ppm/mA)
Figure 13. ADR392 Load Regulation vs. Temperature
80
IL= 0mA TO 5mA
70 VIN = 7.5V VIN = 5V 60
80
60 VIN = 3.0V 40 VIN = 5.0V
50
00419-D-011
0 -40
-10
20 50 TEMPERATURE (C)
80
110
125
30 -40
-5
30 65 TEMPERATURE (C)
100
125
Figure 11. ADR390 Load Regulation vs. Temperature
Figure 14. ADR395 Load Regulation vs. Temperature
Rev. E | Page 10 of 20
00419-D-014
20
40
ADR390/ADR391/ADR392/ADR395
25
14 12
LINE REGULATION (ppm/V)
20
LINE REGULATION (ppm/V)
10 VIN = 5.3V TO 15V 8
15
10
6
4 2
5
00419-D-015
00419-D-018
0 -40
-10
20 50 TEMPERATURE (C)
80
110
125
0 -40
-5
30 65 TEMPERATURE (C)
100
125
Figure 15. ADR390 Line Regulation vs. Temperature
25
3.0
Figure 18. ADR395 Line Regulation vs. Temperature
+125C
LINE REGULATION (ppm/V)
20
2.8
15
VIN_MIN (V)
2.6 -40C
10
2.4 +85C
+25C
5
00419-D-016
2.2
00419-D-019
0 -40
-10
20 50 TEMPERATURE (C)
80
110
125
2.0
0
1
2 3 LOAD CURRENT (mA)
4
5
Figure 16. ADR391 Line Regulation vs. Temperature
14 12
Figure 19. ADR390 Minimum Input Voltage vs. Load Current
3.6
+125C 3.4 +85C
LINE REGULATION (ppm/V)
10
VIN_MIN (V)
8 VIN = 4.4V TO 15V
3.2 +25C 3.0 -40C
6 4
2.8
00419-D-017
0 -40
2.6
-5
30 65 TEMPERATURE (C)
100
125
0
1
2 3 LOAD CURRENT (mA)
4
5
Figure 17. ADR392 Line Regulation vs. Temperature
Figure 20. ADR391 Minimum Input Voltage vs. Load Current
Rev. E | Page 11 of 20
00419-D-020
2
ADR390/ADR391/ADR392/ADR395
4.8
70 60
TEMPERATURE: +25C
-40C
+125C
+25C
+125C 4.6
50
VIN_MIN (V)
FREQUENCY
4.4 +25C
40 30 20
-40C 4.2
4.0
00419-D-021
00419-D-024
10
3.8 0 1 2 3 LOAD CURRENT (mA) 4 5
0 -0.56
-0.41
-0.11 -0.26 0.04 VOUT DEVIATION (mV)
0.19
0.34
Figure 21. ADR392 Minimum Input Voltage vs. Load Current
6.0
Figure 24. ADR391 VOUT Hysteresis Distribution
1k VIN = 5V
+125C 5.6
VIN_MIN (V)
5.4
+25C
VOLTAGE NOISE DENSITY (nV/ Hz)
5.8
ADR391
5.2 5.0
-40C
ADR390
00419-D-022
4.6 0 1 2 3 LOAD CURRENT (mA) 4 5
100
10
1k 100 FREQUENCY (Hz)
10k
Figure 22. ADR395 Minimum Input Voltage vs. Load Current
60
Figure 25. Voltage Noise Density vs. Frequency
0
TEMPERATURE: +25C
50
-40C
+125C
+25C
0 0
40
VOLTAGE (2V/DIV)
FREQUENCY
0 0 0 0
30
20
00419-D-023
0 0 TIME (1 Sec/DIV)
0 -0.24 -0.18 -0.12 -0.06 0 0.06 0.12 VOUT DEVIATION (mV)
0.18
0.24
0.30
Figure 23. ADR390 VOUT Hysteresis Distribution
Figure 26. ADR391 Typical Voltage Noise 0.1 Hz to 10 Hz
Rev. E | Page 12 of 20
00419-D-026
10
00419-D-025
4.8
ADR390/ADR391/ADR392/ADR395
CL = 0nF VOUT
VOLTAGE (100V/DIV)
VOLTAGE (1V/DIV)
VLOAD ON
LOAD OFF
TIME (10s/DIV)
TIME (200s/DIV)
Figure 27. ADR391 Voltage Noise 10 Hz to 10 kHz
CBYPASS = 0F
Figure 30. ADR391 Load Transient Response
CL = 1nF VOUT
VOLTAGE (1V/DIV)
LINE INTERRUPTION
VOLTAGE
0.5V/DIV
LOAD OFF VLOAD ON
VOUT
1V/DIV
00419-D-028
TIME (10s/DIV)
TIME (200s/DIV)
Figure 28. ADR391 Line Transient Response
CBYPASS = 0.1F
Figure 31. ADR391 Load Transient Response
CL = 100nF VOUT
VOLTAGE (1V/DIV)
LINE INTERRUPTION
VOLTAGE
0.5V/DIV
LOAD OFF VLOAD ON
VOUT
1V/DIV
00419-D-029
TIME (10s/DIV)
TIME (200s/DIV)
Figure 29. ADR391 Line Transient Response
Figure 32. ADR391 Load Transient Response
Rev. E | Page 13 of 20
00419-D-032
00419-D-031
00419-D-030
ADR390/ADR391/ADR392/ADR395
VIN = 15V 5V/DIV
2V/DIV VOUT
VOLTAGE
RL = 500
VIN
VOUT
2V/DIV
VIN 5V/DIV
00419-D-033
VOLTAGE
TIME (20s/DIV)
TIME (200s/DIV)
Figure 33. ADR391 Turn-On Response Time at 15 V
VIN = 15V VIN 5V/DIV
VOLTAGE (5V/DIV)
Figure 36. ADR391 Turn-On/Turn-Off Response at 5 V
RL = 500 CL = 100nF 2V/DIV VOUT
VOLTAGE
VOUT
2V/DIV
VIN
5V/DIV
00419-D-034
TIME (40s/DIV)
TIME (200s/DIV)
Figure 34. ADR391 Turn-Off Response at 15 V
CBYPASS = 0.1F
80 60 40
Figure 37. ADR391 Turn-On/Turn-Off Response at 5 V
VOUT
RIPPLE REJECTION (dB)
2V/DIV
20 0 -20 -40 -60 -80 -100 -120 10 100 1k 10k FREQUENCY (Hz) 100k
00419-D-038
VOLTAGE
VIN
5V/DIV
00419-D-035
TIME (200s/DIV)
1M
Figure 35. ADR391 Turn-On/Turn-Off Response at 5 V
Figure 38. Ripple Rejection vs. Frequency
Rev. E | Page 14 of 20
00419-D-037
00419-D-036
ADR390/ADR391/ADR392/ADR395
100 90 80
OUTPUT IMPEDANCE ()
70 60 CL = 0F 50 40 30 20 10 0 10 100 CL = 1F CL = 0.1F
1k 10k FREQUENCY (Hz)
100k
1M
Figure 39. Output Impedance vs. Frequency
00419-D-039
Rev. E | Page 15 of 20
ADR390/ADR391/ADR392/ADR395 THEORY OF OPERATION
Band gap references are the high performance solution for low supply voltage and low power voltage reference applications, and the ADR390/ADR391/ADR392/ADR395 are no exception. The uniqueness of these devices lies in the architecture. As shown in Figure 40, the ideal zero TC band gap voltage is referenced to the output, not to ground. Therefore, if noise exists on the ground line, it will be greatly attenuated on VOUT. The band gap cell consists of the PNP pair, Q51 and Q52, running at unequal current densities. The difference in VBE results in a voltage with a positive TC, which is amplified by a ratio of R58 2x R54 This PTAT voltage, combined with VBEs of Q51 and Q52, produces a stable band gap voltage. Reduction in the band gap curvature is performed by the ratio of the resistors R44 and R59, one of which is linearly temperature dependent. Precision laser trimming and other patented circuit techniques are used to further enhance the drift performance.
VIN
Device Power Dissipation Considerations
The ADR390/ADR391/ADR392/ADR395 are capable of delivering load currents to 5 mA with an input voltage that ranges from 2.8 V (ADR391 only) to 15 V. When these devices are used in applications with large input voltages, care should be taken to avoid exceeding the specified maximum power dissipation or junction temperature because it could result in premature device failure. The following formula should be used to calculate a device's maximum junction temperature or dissipation: PD = TJ - TA JA
In this equation, TJ and TA are, respectively, the junction and ambient temperatures, PD is the device power dissipation, and JA is the device package thermal resistance.
Shutdown Mode Operation
The ADR390/ADR391/ADR392/ADR395 include a shutdown feature that is TTL/CMOS level compatible. A Logic Low or a zero volt condition on the SHDN pin is required to turn the devices off. During shutdown, the output of the reference becomes a high impedance state where its potential would then be determined by external circuitry. If the shutdown feature is not used, the SHDN pin should be connected to VIN (Pin 2).
Q1
VOUT (FORCE) VOUT (SENSE)
R59
R44
R58
R49
R54
SHDN
Q51
R53 Q52
R48
00419-D-040
R60
R61
GND
Figure 40. Simplified Schematic
Rev. E | Page 16 of 20
ADR390/ADR391/ADR392/ADR395 APPLICATIONS
BASIC VOLTAGE REFERENCE CONNECTION
The circuit shown in Figure 41 illustrates the basic configuration for the ADR39x family. Decoupling capacitors are not required for circuit stability. The ADR39x family is capable of driving capacitive loads from 0 F to 10 F. However, a 0.1 F ceramic output capacitor is recommended to absorb and deliver the charge as required by a dynamic load.
SHUTDOWN INPUT CB SHDN VIN 0.1F VOUT(S) VOUT(F) GND
Two reference ICs are used, fed from an unregulated input, VIN. The outputs of the individual ICs are simply connected in series, which provides two output voltages, VOUT1 and VOUT2. VOUT1 is the terminal voltage of U1, while VOUT2 is the sum of this voltage and the terminal voltage of U2. U1 and U2 are simply chosen for the two voltages that supply the required outputs (see the Output Table in Figure 42). For example, if both U1 and U2 are ADR391s, VOUT1 is 2.5 V and VOUT2 is 5.0 V. While this concept is simple, a precaution is in order. Since the lower reference circuit must sink a small bias current from U2 plus the base current from the series PNP output transistor in U2, either the external load of U1 or R1 must provide a path for this current. If the U1 minimum load is not well defined, the R1 resistor should be used and set to a value that will conservatively pass 600 A of current with the applicable VOUT1 across it. Note that the two U1 and U2 reference circuits are treated locally as macrocells; each has its own bypasses at input and output for best stability. Both U1 and U2 in this circuit can source dc currents up to their full rating. The minimum input voltage, VIN, is determined by the sum of the outputs, VOUT2, plus the dropout voltage of U2.
ADR39x
*
* *NOT REQUIRED CB
OUTPUT 0.1F
Figure 41. Basic Configuration for the ADR39x Family
Stacking Reference ICs for Arbitrary Outputs
Some applications may require two reference voltage sources, which are a combined sum of standard outputs. Figure 42 shows how this "stacked output" reference can be implemented.
OUTPUT TABLE U1/U2 ADR390/ADR390 ADR391/ADR391 ADR392/ADR392 ADR395/ADR395 VOUT1 (V) VOUT2 (V) 2.048 2.5 4.096 5 4.096 5.0 8.192 10
00419-D-041
A Negative Precision Reference without Precision Resistors
A negative reference can be easily generated by adding an op amp, A1, and is configured as shown in Figure 43. VOUTF and VOUTS are at virtual ground and, therefore, the negative reference can be taken directly from the output of the op amp. The op amp must be dual-supply, low offset, and rail-to-rail if the negative supply voltage is close to the reference output.
VOUT2
+VDD
VIN 2 VIN 1 C2 0.1F SHDN VOUT(F) VOUT(S) GND 5 4 3 U2
2 VIN 4V OUT(F)
U1 2 VIN 1 C2 0.1F SHDN VOUT(F) VOUT(S) GND 5
00419-D-042
3V OUT(S)
SHDN
1
4 3
VOUT1
GND 5 A1 -VREF
00419-D-043
-VDD
Figure 42. Stacking Voltage References with the ADR390/ADR391/ADR392/ADR395
Figure 43. Negative Reference
Rev. E | Page 17 of 20
ADR390/ADR391/ADR392/ADR395
General-Purpose Current Source
Many times in low power applications, the need arises for a precision current source that can operate on low supply voltages. ADR390/ADR391/ADR392/ADR395 can be configured as a precision current source. As shown in Figure 45, the circuit configuration is a floating current source with a grounded load. The reference's output voltage is bootstrapped across RSET, which sets the output current into the load. With this configuration, circuit precision is maintained for load currents in the range from the reference's supply current, typically 90 A to approximately 5 mA.
VIN
The transistor Q2 protects Q1 during short-circuit limit faults by robbing its base drive. The maximum current is ILMAX 0.6 V/RS
R1 4.7k SHDN VIN VOUT (FORCE) VOUT (SENSE) Q2 Q2N2222 Q1 Q2N4921 U1 GND
VIN
ADR39x
RS IL
00419-D-045 00419-D-046
RL
SHDN VOUT
Figure 45. ADR39x for High Power Performance with Current Limit
ISET R1 0.1F R1 RSET
ADR39x
VIN
VOUT
A similar circuit function can also be achieved with the Darlington transistor configuration, as shown in see Figure 46.
R1 4.7k
GND ISY ADJUST P1 IOUT = ISET + ISY (ISET) RL
00419-D-044
VIN
U1
ISY (ISET)
SHDN
VIN
GND Q2N2222 Q1 Q2 Q2N4921 RS
VOUT (FORCE) VOUT (SENSE)
Figure 44. A General-Purpose Current Source
ADR39x
High Power Performance with Current Limit
In some cases, the user may want higher output current delivered to a load and still achieve better than 0.5% accuracy out of the ADR39x. The accuracy for a reference is normally specified on the data sheet with no load. However, the output voltage changes with load current. The circuit in Figure 45 provides high current without compromising the accuracy of the ADR39x. The series pass transistor Q1 provides up to 1 A load current. The ADR39x delivers only the base drive to Q1 through the force pin. The sense pin of the ADR39x is a regulated output and is connected to the load.
RL
Figure 46. ADR39x for High Output Current with Darlington Drive Configuration
Rev. E | Page 18 of 20
ADR390/ADR391/ADR392/ADR395 OUTLINE DIMENSIONS
2.90 BSC
5
4
1.60 BSC
1 2 3
2.80 BSC
PIN 1 0.95 BSC 0.90 0.87 0.84 1.90 BSC
1.00 MAX 8 4 0.20 0.08
0.10 MAX
0.50 0.30
SEATING PLANE
0.60 0.45 0.30
COMPLIANT TO JEDEC STANDARDS MO-193AB
Figure 47. 5-Lead Thin Small Outline Transistor Package [TSOT] (UJ-5) Dimensions shown in millimeters
ORDERING GUIDE
Models ADR390AUJZ-REEL71 ADR390AUJZ-R21 ADR390BUJZ-REEL71 ADR390BUJZ-R21 ADR391AUJZ-REEL71 ADR391AUJZ-R21 ADR391BUJZ-REEL71 ADR391BUJZ-R21 ADR392AUJZ-REEL71 ADR392AUJZ-R21 ADR392BUJZ-REEL71 ADR392BUJZ-R21 ADR395AUJZ-REEL71 ADR395AUJZ-R21 ADR395BUJZ-REEL71 ADR395BUJZ-R21 Output Voltage (VO) 2.048 2.048 2.048 2.048 2.5 2.5 2.5 2.5 4.096 4.096 4.096 4.096 5.0 5.0 5.0 5.0 Initial Accuracy (mV) (%) 6 0.29 6 0.29 4 0.19 4 0.19 6 0.24 6 0.24 4 0.16 4 0.16 6 0.15 6 0.15 5 0.12 5 0.12 6 0.12 6 0.12 5 0.10 5 0.10 Temperature Coefficient (ppm/C) 25 25 9 9 25 25 9 9 25 25 9 9 25 25 9 9 Package Description TSOT TSOT TSOT TSOT TSOT TSOT TSOT TSOT TSOT TSOT TSOT TSOT TSOT TSOT TSOT TSOT Package Option UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 Branding R0A R0A R0B R0B R1A R1A R1B R1B RCA RCA RCB RCB RDA RDA RDB RDB Number of Parts per Reel 3,000 250 3,000 250 3,000 250 3,000 250 3,000 250 3,000 250 3,000 250 3,000 250 Temperature Range -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C
1
Z = Pb-free part.
Rev. E | Page 19 of 20
ADR390/ADR391/ADR392/ADR395 NOTES
(c) 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C00419-0-4/04(E)
Rev. E | Page 20 of 20


▲Up To Search▲   

 
Price & Availability of ADR390AUJZ-R2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X